Inhibition of toxicity and protofibril formation in the amyloid-beta peptide beta(25-35) using N-methylated derivatives.

نویسندگان

  • A J Doig
  • E Hughes
  • R M Burke
  • T J Su
  • R K Heenan
  • J Lu
چکیده

Beta (25-35) is a fragment of beta-amyloid that retains its wild-type properties. N-methylated derivatives of beta(25-35) can block hydrogen bonding on the outer edge of the assembling amyloid, so preventing the aggregation and inhibiting the toxicity of the wild-type peptide. The effects are assayed by Congo Red and thioflavin T binding, electron microscopy and an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] toxicity assay. N-methyl-Gly-25 has similar properties to the wild- type, while five other methylation sites have varying effects on prefolded fibrils and fibril assembly. In particular, N-methyl-Gly-33 is able to completely prevent fibril assembly and reduces the toxicity of prefolded amyloid. With N-methyl-Leu-34 the fibril morphology is altered and toxicity reduced. A preliminary study of beta(25-35) structure in aqueous solution was made by small-angle neutron scattering (SANS). The protofibrillar aggregates are best described as a disc of radius 140 A and height 53 A (1 A = 0.1 nm), though the possibility of polydisperse aggregates cannot be ruled out. No aggregates form in the presence of N-methyl-Gly-33. We suggest that the use of N-methylated derivatives of amyloidogenic peptides and proteins could provide a general solution to the problem of amyloid deposition and toxicity and that SANS is an important technique for the direct observation of protofibril formation and destruction in solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations

The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...

متن کامل

Molecular Dynamics and Molecular Docking Studies on the Interaction between Four Tetrahydroxy Derivatives of Polyphenyls and Beta Amyloid

Interactions of 3,3',4,4'-tetrahydroxybiphenyl (BPT) and three isomeric 3,3",4,4"-tetrahydroxyterphenyls (OTT, MTT, PTT) with Alzheimer’s amyloid-β peptide (Aβ) were studied by molecular dynamics simulation and molecular docking. Structural parameters such as Root-mean-square derivations (RMSD), radial distribution function (RDF), helix percentage and other physical parameters were obtained. Th...

متن کامل

P135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease

Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms.  Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...

متن کامل

Attenuated amyloid-beta aggregation and neurotoxicity owing to methionine oxidation.

Aggregation of the amyloid-beta (Abeta) peptide into amyloid plaques is a characteristic feature of Alzheimer's disease neuropathogenesis. We and others have previously demonstrated delayed Abeta aggregation as a consequence of oxidizing a single methionine residue at position 35 (Met-35). Here, we examined the consequences of Met-35 oxidation on the extremely aggregation-prone peptides Abeta1-...

متن کامل

Dual binding modes of Congo red to amyloid protofibril surface observed in molecular dynamics simulations.

Congo red has been used to identify amyloid fibrils in tissues for more than 80 years and is also a weak inhibitor to both amyloid-beta fibril formation and toxicity. However, the specificity of the binding and its inhibition mechanism remain unclear. Using all-atom molecular dynamics simulations with the explicit solvent model, we have identified and characterized two specific binding modes of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 30 4  شماره 

صفحات  -

تاریخ انتشار 2002